• Follow Us On :

Question 36

Show that one and only one out of n, n+2 or n+4 is divisible by 3, where n is any positive integer.

Solution:

To show that one and only one out of n,n+2,n+4 is divisible by 3, where n is any positive integer, we can analyze the possible cases based on the value of n modulo 3.

1. Consider the possible values of n modulo 3:
– Any integer n can be expressed in one of three forms based on its remainder when divided by 3:
– Case 1: n0mod3
– Case 2: n1mod3
– Case 3: n2mod3

2. Analyze Case 1: n0mod3:
– If n0mod3, then:
– n is divisible by 3.
– n+22mod3 (not divisible by 3)
– n+41mod3 (not divisible by 3)
– Conclusion: In this case, only n is divisible by 3.

3. Analyze Case 2: n1mod3:
– If n1mod3, then:
– n is not divisible by 3.
– n+20mod3 (divisible by 3)
– n+41mod3 (not divisible by 3)
– Conclusion: In this case, only n+2 is divisible by 3.

4. Analyze Case 3: n2mod3:
– If n2mod3, then:
– n is not divisible by 3.
– n+21mod3 (not divisible by 3)
– n+40mod3 (divisible by 3)
– Conclusion: In this case, only n+4 is divisible by 3.

5. Final Conclusion:
– In all three cases, we have shown that one and only one of the numbers n,n+2,n+4 is divisible by 3.