Question 23
Show that the square of any positive integer cannot be of the form 5q+2 or 5q+3 for some integer q.
Solution:
Let a be an arbitrary positive integer. Then by Euclid’s divison Algorithm, corresponding to the positive integers a and 5, there exist non-negative integers m and r such that
a=5m+r,where0≤r<5
⇒a2=(5m+r)2=25m2+r2+10mr [∴(a+b)2=a2+2ab+b2] ….(i)
⇒a2=5(5m2+2mr)+r2
Where , 0≤r<5
CASE I When r=0, then putting r=0 in Eq. (i), we get
a2=5(5m2)=5q
where, q=5m2 is an integer
CASE II When r=1, then putting r=1, is Eq. (i) we get a2=5(5m2+2m)+1
⇒q=5q+1
where, q=(5m2+2m) is an integer
CASE III When r=3, then putting r=3 in Eq. (i), we get
a2=5(5m2+4m)+4=5q+4
where, q=(5m2+4m) is an integer.
CASE IV When r=3, then putting r=3, in Eq. (i), we get
a2=5(5m2+6m)+9=5(5m2+6m)+5+4
=5(5m2+6m+1)+5=5q+4
where, q=(5m2+6m+1) is an integer.
CASE V When r=4 , then putting r=4, in Eq.(i) we get
a2=5(5m2+8m)+16=5(5m2+8m)+15+1
⇒a2=5(5m2+8m+3)+1=5q+1
where, q=(5m2+8m+3) is an integer
Hence the square of an y positive integer cannot be of the form 5q+2 or 5q+3 for any integer q.