Question 7
The zeroes of the quadratic polynomial x2+99x+127 are
Solution:
To find the zeroes of the quadratic polynomial x2+99x+127, we will follow these steps:
Step 1: Write the polynomial and set it equal to zero
We start with the polynomial:
x2+99x+127=0
Step 2: Identify coefficients
From the polynomial, we identify the coefficients:
– a=1 (coefficient of x2)
– b=99 (coefficient of x)
– c=127 (constant term)
Step 3: Calculate the discriminant
The discriminant D is given by the formula:
D=b2−4ac
Substituting the values of a, b, and c:
D=992−4⋅1⋅127
Calculating 992:
992=9801
Calculating 4⋅1⋅127:
4⋅127=508
Now substituting these values back into the discriminant formula:
D=9801−508=9293
Step 4: Calculate the square root of the discriminant
Next, we find the square root of the discriminant:
√D=√9293≈96.4
Step 5: Use the quadratic formula to find the zeroes
The zeroes of the polynomial can be found using the quadratic formula:
x=(−b±√D)/2a
Substituting the values of b, √D, and a:
x=(−99±96.4)/2⋅1
This gives us two equations to solve:
1. x1=(−99+96.4)/2
2. x2=(−99−96.4)/2
Step 6: Calculate the first zero
Calculating x1:
x1=(−99+96.4)/2=−2.62=−1.3
Step 7: Calculate the second zero
Calculating x2:
x2=(−99−96.4)/2=−97.7
Conclusion
The zeroes of the quadratic polynomial x2+99x+127 are:
x1=−1.3 and x2=−97.7