• Follow Us On :

Question 7

The zeroes of the quadratic polynomial x2+99x+127 are

Solution:

To find the zeroes of the quadratic polynomial x2+99x+127, we will follow these steps:

Step 1: Write the polynomial and set it equal to zero
We start with the polynomial:
x2+99x+127=0

Step 2: Identify coefficients
From the polynomial, we identify the coefficients:
– a=1 (coefficient of x2)
– b=99 (coefficient of x)
– c=127 (constant term)

Step 3: Calculate the discriminant
The discriminant D is given by the formula:
D=b24ac
Substituting the values of ab, and c:
D=99241127
Calculating 992:
992=9801
Calculating 41127:
4127=508
Now substituting these values back into the discriminant formula:
D=9801508=9293

Step 4: Calculate the square root of the discriminant
Next, we find the square root of the discriminant:
D=929396.4

Step 5: Use the quadratic formula to find the zeroes
The zeroes of the polynomial can be found using the quadratic formula:
x=(b±D)/2a
Substituting the values of bD, and a:
x=(99±96.4)/21
This gives us two equations to solve:
1. x1=(99+96.4)/2
2. x2=(9996.4)/2

Step 6: Calculate the first zero
Calculating x1:
x1=(99+96.4)/2=2.62=1.3

Step 7: Calculate the second zero
Calculating x2:
x2=(9996.4)/2=97.7

Conclusion
The zeroes of the quadratic polynomial x2+99x+127 are:
x1=1.3 and x2=97.7