• Follow Us On :

Question 6

If one of the zeroes of the cubic polynomial x3+ax2+bx+c is 1,then find the product of other two zeroes.

Solution:

Let p(x)=x3+ax2+bx+c
Let α,β and γ be the zeroes of the given cubic polynomial p(x).
α=1” “[given]
and p(1)=0
(1)3+a(1)2+b(1)+c=0
1+ab+c=0
c=1a+b …(i)
We know that,
Product of all zeroes =(1)3[Constant term/Coefficient of x3]=c1
αβγ=c
(1)βγ=c [α=1]
βγ=c
βγ=1a+b ” “[from Eq.(i)]
Hence, product the other two roots is 1a+b.