• Follow Us On :

Question 5

If one of the zeroes of the cubic polynomial ax3+bx2+cx+d is zero, then the product of other two zeroes is

Solution:

Let p(x)=ax3+bx2+cx+d
Given that, one of the zeroes of the cubic polynomial p(x) is zero.
Let α,β and γ are the zeroes of cubic polynomial p(x), where a=0. We known that,
Sum of product of two zeroes at a time =c/a
αβ+βγ+γα=c/a
0×β+βγ+γ×0=c/a[α=0,given]
0+βγ+0=c/a
βγ=c/a
Hence, product of other two zeroes =c/a