• Follow Us On :

Question 3

If the zeroes of the quadratic polynomial x2+(a+1)x+b are 2 and -3, then find the values of a and b

Solution:

Let p(x)=x2+(a+1)x+b
Given that , 2 and -3 are the zeroes of the quadratic polynomial p(x).
p(2)=0 and p(3)=0
22+(a+1)(2)+b=0
4+2a+2+b=0
2a+b=6 ..(i)
and (3)2+(a+1)(3)+b=0
93a3+b=0
3ab=6 …(ii)
On adding Eqs.(i) and (ii), we get
5a=0a=0
Put the value of a in Eq (i), we get
2×0+b=6b=6
So, the required values are a=0 and b=6