Question 3
If the zeroes of the quadratic polynomial x2+(a+1)x+b are 2 and -3, then find the values of a and b
Solution:
Let p(x)=x2+(a+1)x+b
Given that , 2 and -3 are the zeroes of the quadratic polynomial p(x).
∴p(2)=0 and p(−3)=0
⇒22+(a+1)(2)+b=0
⇒4+2a+2+b=0
⇒2a+b=−6 ..(i)
and (−3)2+(a+1)(−3)+b=0
⇒9−3a−3+b=0
⇒3a−b=6 …(ii)
On adding Eqs.(i) and (ii), we get
5a=0⇒a=0
Put the value of a in Eq (i), we get
2×0+b=−6⇒b=−6
So, the required values are a=0 and b=−6