• Follow Us On :

Question 29

For which values of a and b, the zeroes of q(x)=x3+2x2+a are also the zeroes of the polynomial p(x)=x5x44x3+3x2+3x+b? Which zeores of p(x) are not the zeroes of q(x)?

Solution:

To solve the problem, we need to find the values of a and b such that the zeros of the polynomial q(x)=x3+2x2+a are also the zeros of the polynomial p(x)=x5x44x3+3x2+3x+b. We will also determine which zeros of p(x) are not zeros of q(x).

1. Understanding the Relationship:
Since the zeros of q(x) are also zeros of p(x), it implies that q(x) is a factor of p(x). Therefore, when we divide p(x) by q(x), the remainder should be zero.

2. Perform Polynomial Long Division:
We will divide p(x) by q(x) using polynomial long division.

– Setup the Division:
p(x)=x5x44x3+3x2+3x+b
q(x)=x3+2x2+a

– First Division:
Divide the leading term of p(x) by the leading term of q(x):
x5/x3=x2
Multiply q(x) by x2:
x2(x3+2x2+a)=x5+2x4+ax2
Subtract this from p(x):
(x5x44x3+3x2+3x+b)(x5+2x4+ax2)=3x44x3+(3a)x2+3x+b

– Second Division:
Divide the leading term of the new polynomial by the leading term of q(x):
3x4/x3=3x
Multiply q(x) by 3x:
3x(x3+2x2+a)=3x46x33ax
Subtract:
(3x44x3+(3a)x2+3x+b)(3x46x33ax)=2x3+(3a)x2+(3+3a)x+b

– Third Division:
Divide the leading term again:
2x3/x3=2
Multiply q(x) by 2:
2(x3+2x2+a)=2x3+4x2+2a
Subtract:
(2x3+(3a)x2+(3+3a)x+b)(2x3+4x2+2a)=(3a4)x2+(3+3a)x+(b2a)

3. Setting the Remainder to Zero:
For q(x) to be a factor of p(x), the remainder must be zero:
(3a4)x2+(3+3a)x+(b2a)=0
This implies:
– Coefficient of x23a4=0 → a=1
– Coefficient of x3+3a=0 → 33=0 (consistent)
– Constant term: b2a=0 → b2(1)=0 → b=2

4. Final Values:
The values of a and b are:
a=1,b=2

5. Finding Extra Zeros of p(x):
Now, we need to find the zeros of p(x) that are not zeros of q(x). The remainder polynomial after division was:
x23x+2=0
Factoring gives:
(x1)(x2)=0
Thus, the zeros are x=1 and x=2.

Conclusion:
The zeros of p(x) that are not zeros of q(x) are x=1 and x=2.