• Follow Us On :

Question 28

If x5 is a factor of the cubic polynomial x335x2+13x35, then find all the zeroes of the polynomial.

Solution:

To find all the zeroes of the cubic polynomial P(x)=x335x2+13x35, given that x5 is a factor, we can follow these steps:

Step 1: Identify the known zero
Since x5 is a factor, it means that 5 is a zero of the polynomial. Therefore, we can say:
P(5)=0

Step 2: Use Vieta’s formulas
For a cubic polynomial ax3+bx2+cx+d, the relationships between the coefficients and the roots (zeroes) α,β,γ are given by:
α+β+γ=b/a
αβ+βγ+γα=c/a
αβγ=d/a

Here, a=1b=35c=13, and d=35.

Step 3: Calculate the sum of the roots
Using Vieta’s first formula:
α+β+γ=351=35
Since we know α=5, we can substitute:
5+β+γ=35
This simplifies to:
β+γ=355=25

Step 4: Calculate the product of the roots
Using Vieta’s third formula:
αβγ=−(35)/1=35
Substituting α=5:
5βγ=35
Dividing both sides by 5 (assuming 50):
βγ=3

Step 5: Set up equations for β and γ
Now we have two equations:
1. β+γ=25
2. βγ=3

Step 6: Substitute and form a quadratic equation
Let β and γ be the roots of the quadratic equation x2(sum)x+(product)=0:
x2(25)x+3=0

Step 7: Solve the quadratic equation
Using the quadratic formula:
x=[b±√(b24ac)]/2a
Here, a=1b=25, and c=3:
x=[25±√{(25)2413}]/(21)
Calculating the discriminant:
(25)212=2012=8
Thus, we have:
x=(25±8)/2
x=(25±22)/2
x=5±2

Step 8: Find all zeroes
Now we can summarize the zeroes:
α=5
β=5+2
γ=52

Thus, the zeroes of the polynomial are:
5+2,52,5